
Report for Q101 Token
Smart Contracts

Date: January 4, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Security Issues . 2
1.3.2 Additional Recommendation . 3

1.4 Security Model . 3

Chapter 2 Findings 4
2.1 Security Issue . 4

2.1.1 Premature vesting release due to rounding down 4
2.1.2 Potential replay risks due to lack of domain separation 6
2.1.3 Potential DoS on airdrop claims . 6
2.1.4 Lack of voucherId invalidation for failed reveal attempts 7

2.2 Recommendation . 9
2.2.1 Validate configured startTime in function configureAirdrop() 9
2.2.2 Remove redundant code . 10
2.2.3 Fix conflicts in documentation . 10
2.2.4 Optimize ownership grant logic . 11

2.3 Note . 11
2.3.1 Ensure secure generation of vouchers . 11
2.3.2 Potential centralization risks . 12
2.3.3 Proxy deployment and implementation binding should be atomic 12
2.3.4 Ensure sufficient token balances in contract Q101AirdropVesting 12
2.3.5 Security of Gelato integration . 13
2.3.6 Merkle tree modification should only add new vouchers 13

Report Manifest

Item Description
Client Open Quest Academy
Target Q101 Token Smart Contracts

Version History

Version Date Description
1.0 January 4, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository 1 of Q101 Token Smart Contracts of Open
Quest Academy.

The project consists of two upgradeable contracts, Q101Token and Q101AirdropVesting.
Contract Q101Token is an ERC-20 token with a fixed supply of 1 billion tokens, featuring emer-
gency pause functionality and UUPS upgradeability. The ownership and initially minted total
supply are controlled by a Gnosis Safe multi-signature address. Contract Q101AirdropVesting
serves as the airdrop and vesting contract for Q101Token. It features a commit-reveal mecha-
nism to prevent front-running during airdrop claims, Merkle proof verification for eligibility, and
a three-stage token release model. The contract also supports gasless transactions through
Gelato Relay integration.

Note this audit only focuses on the smart contracts in the following directories/files:
src
Other files are not within the scope of the audit. Additionally, all dependencies of the

smart contracts within the audit scope are considered reliable in terms of both functionality
and security, and are therefore not included in the audit scope.

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for the
code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report. Code prior to and including the baseline version (Version 0), where
applicable, is outside the scope of this audit and assumes to be reliable and secure.

Project Version Commit Hash

q101-coin-smart-contract Version 1 2eb2bbd02d0a3da0c00151eaa656b0c5cc0630e3
Version 2 d4a301eb606beb64f153dc269bc0181488e2df97

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.

1https://github.com/Open-Quest-Academy/q101-coin-smart-contract

https://github.com/Open-Quest-Academy/q101-coin-smart-contract

Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-
itly specified, the security of the language itself (e.g., the solidity language), the underlying
compiling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Security Issues

∗ Access control
∗ Permission management
∗ Whitelist and blacklist mechanisms
∗ Initialization consistency
∗ Improper use of the proxy system
∗ Reentrancy
∗ Denial of Service (DoS)
∗ Untrusted external call and control flow
∗ Exception handling
∗ Data handling and flow
∗ Events operation
∗ Error-prone randomness
∗ Oracle security
∗ Business logic correctness
∗ Semantic and functional consistency
∗ Emergency mechanism

2

∗ Economic and incentive impact

1.3.2 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and CommonWeak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following five cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Partially Fixed The item has been confirmed and partially fixed by the client.
- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we found four potential security issues. Besides, we have four recommendations
and six notes.

- Medium Risk: 3
- Low Risk: 1
- Recommendation: 4
- Note: 6

ID Severity Description Category Status

1 Medium
Premature vesting release due to round-
ing down

Security Issue Fixed

2 Medium
Potential replay risks due to lack of do-
main separation

Security Issue Confirmed

3 Medium Potential DoS on airdrop claims Security Issue Fixed

4 Low
Lack of voucherId invalidation for failed
reveal attempts

Security Issue Fixed

5 -
Validate configured startTime in function
configureAirdrop()

Recommendation Confirmed

6 - Remove redundant code Recommendation Fixed
7 - Fix conflicts in documentation Recommendation Fixed
8 - Optimize ownership grant logic Recommendation Fixed
9 - Ensure secure generation of vouchers Note -
10 - Potential centralization risks Note -

11 -
Proxy deployment and implementation
binding should be atomic

Note -

12 -
Ensure sufficient token balances in con-
tract Q101AirdropVesting

Note -

13 - Security of Gelato integration Note -

14 -
Merkle tree modification should only add
new vouchers

Note -

The details are provided in the following sections.

2.1 Security Issue

2.1.1 Premature vesting release due to rounding down

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In the contract Q101AirdropVesting, the function _calculateLinearVested() cal-
culates the vested token amount based on global duration and frequency parameters. How-
ever, the calculation logic is incorrect when the vesting frequency is set to PER_DAY or PER_MONTH
because the total number of periods is rounded down during integer division. As a result, this
design flaw causes the entire token allocation to be released before the actual vesting duration
concludes.
607 function _calculateLinearVested(
608 uint256 vestingBase,
609 uint256 vestingElapsed,
610 uint256 duration
611) internal view returns (uint256) {
612 // If vesting period completed, return all
613 if (vestingElapsed >= duration) {
614 return vestingBase;
615 }
616
617 // Calculate based on frequency mode
618 if (vestingFrequency == VestingFrequency.PER_SECOND) {
619 // Per second: most precise
620 return (vestingBase * vestingElapsed) / duration;
621 }
622 else if (vestingFrequency == VestingFrequency.PER_DAY) {
623 // Per day: vests once per day
624 uint256 totalDays = duration / 1 days;
625 uint256 elapsedDays = vestingElapsed / 1 days;
626
627 if (elapsedDays >= totalDays) {
628 return vestingBase;
629 }
630 return (vestingBase * elapsedDays) / totalDays;
631 }
632 else if (vestingFrequency == VestingFrequency.PER_MONTH) {
633 // Per month: vests once per 30 days
634 uint256 totalMonths = duration / 30 days;
635 uint256 elapsedMonths = vestingElapsed / 30 days;
636
637 if (elapsedMonths >= totalMonths) {
638 return vestingBase;
639 }
640 return (vestingBase * elapsedMonths) / totalMonths;
641 }
642
643 return 0;
644 }

Listing 2.1: src/Q101AirdropVesting.sol

Impact The rounding down error leads to the premature release of tokens before the vesting
duration officially ends.
Suggestion Add a check in the function configureAirdrop() to ensure that the vesting du-
ration is an exact multiple of the vesting frequency.

5

2.1.2 Potential replay risks due to lack of domain separation

Severity Medium
Status Confirmed
Introduced by Version 1

Description In the contract Q101AirdropVesting, theMerkle leaf is calculated using keccak256
(voucherId, amount), which lacks domain separation elements such as the chain ID or the
contract address. Consequently, if the same Merkle root is reused across different contract
instances on the same chain or across different chains, a valid proof for one contract can be
replayed on another. This risk is particularly relevant as the project intends to deploy two
separate vesting contracts on the BSC network. If a unified Merkle tree is used for both, it will
enable cross-contract replay attacks.
456 // 6. Calculate leaf hash
457 bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(voucherId, amount))));

Listing 2.2: src/Q101AirdropVesting.sol

Impact Users can double-claim tokens by replaying validMerkle proofs across different con-
tract instances or chains, leading to a loss of funds for the project.
Suggestion Include block.chainid and address(this) in theMerkle leaf calculation to ensure
domain separation.
Feedback from theproject The project confirmed that theMerkle Root is generated off-chain
using a new set of high-entropy random vouchers, ensuring that each airdrop’s Merkle Root
differs from previous ones.

2.1.3 Potential DoS on airdrop claims

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In the contract Q101AirdropVesting, function _createAndWithdrawImmediately-
Releasable() verifies that the contract balance covers the total allocation amount. However,
the project employs a staged funding model where contract liquidity is provided incrementally
over time. This verification is incompatible with the funding mechanism. Consequently, even
if the contract funds are sufficient for immediate release but are less than the total allocation,
the verification would fail. This design would result in a denial-of-service (DoS) on legitimate
claims.
482 function _createAndWithdrawImmediatelyReleasable(address user, uint256 amount) internal {
483 require(token.balanceOf(address(this)) >= amount, "Contract: Insufficient tokens");
484
485 // Calculate immediate release amount (Stage 1)
486 uint256 immediateAmount = (amount * immediateReleaseRatio) / RATIO_PRECISION;
487
488 // Create vesting schedule

6

489 vestingSchedules[user] = VestingSchedule({
490 startTime: startTime,
491 duration: uint64(vestingDuration),
492 totalAmount: amount,
493 immediateAmount: immediateAmount,
494 releasedAmount: 0,
495 lastWithdrawTime: uint64(block.timestamp)
496 });
497
498 emit VestingScheduleCreated(user, amount, startTime);
499
500 // Calculate total releasable amount (includes immediate + vested)
501 uint256 totalClaimAmount = _calculateReleasable(user);
502
503 // Update released amount
504 vestingSchedules[user].releasedAmount = totalClaimAmount;
505
506 // Transfer tokens
507 if (totalClaimAmount > 0) {
508 require(token.transfer(user, totalClaimAmount), "Transfer failed");
509 }
510 }

Listing 2.3: src/Q101AirdropVesting.sol

Impact This design results in a DoS for legitimate claims, leading to an inability for users to
initialize their vesting schedules.
Suggestion Revise the logic accordingly.

2.1.4 Lack of voucherId invalidation for failed reveal attempts

Severity Low
Status Fixed in Version 2

Introduced by Version 1

Description In contract Q101AirdropVesting, function reveal() fails to mark a valid voucherId
as used when the function execution fails due to timing constraints or other execution failures.

For instance, if users submit the reveal request with the valid voucherId and amount at 254
blocks after commitment, their transaction may be minted after several blocks, exceeding the
allowed delay range. In this scenario, the transaction reverts while the committed information
is still revealed on-chain. With revealed information, malicious actors can construct their own
commitHash to commit and claim airdrops intended for users.
417 /**
418 * @notice Reveal the committed data and execute claim (gasless via Gelato Relay)
419 * @dev Second step of commit-reveal mechanism, creates vesting schedule and releases tokens
420 * Uses ERC2771 to get real user address from _msgSender()
421 * @param voucherId Unique voucher ID
422 * @param amount Total allocation amount (in wei)
423 * @param salt Random salt used in commitment
424 * @param merkleProof Merkle proof for verification

7

425 */
426 function reveal(
427 bytes32 voucherId,
428 uint256 amount,
429 bytes32 salt,
430 bytes32[] calldata merkleProof
431) external whenNotPaused {
432 // 0. Get real user address via ERC2771
433 address user = _msgSender();
434
435 // 1. Check that merkleRoot has been set
436 require(merkleRoot != bytes32(0), "Airdrop not started: merkle root not set");
437
438 // 2. Reconstruct commitment hash
439 bytes32 commitHash = keccak256(abi.encode(voucherId, user, amount, salt));
440
441 // 3. Verify commitment exists
442 Commitment storage commitment = commitments[commitHash];
443 require(commitment.blockNumber > 0, "Reveal: No commitment found");
444 require(!commitment.revealed, "Reveal: Already revealed");
445 require(commitment.committer == user, "Reveal: Wrong committer");
446
447 // 4. Check timing constraints
448 uint256 blocksPassed = block.number - commitment.blockNumber;
449 require(blocksPassed >= minRevealDelay, "Reveal: Too early");
450 require(blocksPassed <= maxRevealDelay, "Reveal: Too late");
451
452 // 5. Check voucher not claimed yet and user has no existing vesting schedule
453 require(!claimedVouchers[voucherId], "Reveal: Voucher already claimed");
454 require(vestingSchedules[user].totalAmount == 0, "Reveal: User already has vesting schedule

");
455
456 // 6. Calculate leaf hash
457 bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(voucherId, amount))));
458
459 // 7. Verify Merkle proof
460 require(MerkleProof.verify(merkleProof, merkleRoot, leaf), "Reveal: Invalid Merkle proof");
461
462 // 8. Mark as revealed and claimed (both voucherId and leafHash)
463 commitment.revealed = true;
464 claimedVouchers[voucherId] = true;
465 claimedLeafHashes[leaf] = true;
466
467 // 9. Create vesting schedule and release tokens
468 _createAndWithdrawImmediatelyReleasable(user, amount);
469
470 emit Revealed(user, voucherId, amount);
471 }

Listing 2.4: src/Q101AirdropVesting.sol

Impact Malicious actors can claim airdrops on behalf of users who provide valid airdrop in-
formation outside the valid delay range.

8

Suggestion Revise the logic accordingly.
Clarification from BlockSec If users call the function reveal() before minRevealDelay, the
transaction will revert, exposing their voucherId on-chain. This creates a risk where attackers
could exploit the leaked identifier to claim the user’s airdrop. However, since minRevealDelay
is an intentional safeguard enforced by the official frontend to prevent front-running attacks,
this risk does not exist under normal user interactions.

2.2 Recommendation

2.2.1 Validate configured startTime in function configureAirdrop()

Status Confirmed
Introduced by Version 1

Description In contract Q101AirdropVesting, function configureAirdrop() sets core vesting
logic, which cannot be modified once initialized. However, the function lacks sufficient valida-
tion for the variable startTime for all vesting schedules. Specifically, the input _startTime can
be set as a past timestamp, allowing the vesting calculation for cliff and linear stages to begin
from that historical point. Consequently, users who reveal may directly receive a significant or
even the full vesting amount, violating the intended gradual release mechanism.
235 function configureAirdrop(
236 uint64 _startTime,
237 bytes32 _merkleRoot,
238 uint256 _vestingDuration,
239 uint256 _cliffDuration,
240 uint256 _immediateReleaseRatio,
241 uint256 _cliffReleaseRatio,
242 VestingFrequency _vestingFrequency,
243 uint256 _minWithdrawInterval,
244 uint256 _minWithdrawAmount
245) external onlyOwner {
246 // ============ Validation ============
247
248 // Can only be called once (when merkleRoot is not set)
249 require(merkleRoot == bytes32(0), "Airdrop already configured");
250
251 // Validate startTime
252 require(_startTime > 0, "Invalid start time");
253
254 // Merkle root must be non-zero
255 require(_merkleRoot != bytes32(0), "Invalid merkle root");
256
257 // Vesting parameters validation
258 require(_vestingDuration > 0, "Invalid vesting duration");
259 require(_minWithdrawInterval > 0, "Invalid min withdraw interval");
260 require(_minWithdrawAmount > 0, "Invalid min withdraw amount");
261
262 // Release ratios validation
263 require(

9

264 _immediateReleaseRatio + _cliffReleaseRatio <= RATIO_PRECISION,
265 "Immediate + Cliff ratio must <= 100%"
266);

Listing 2.5: src/Q101AirdropVesting.sol

Suggestion Enforce that the configured startTime must be greater than or equal to the cur-
rent block timestamp.
Feedback from the project The project confirmed that this is an intended business logic de-
sign. Allowing the configuration of past timestamps supports more airdrop scenarios, such as
retrospective attribution.

2.2.2 Remove redundant code

Status Fixed in Version 2

Introduced by Version 1

Description In the contract Q101AirdropVesting, the code declares and assigns an immutable
trusted forwarder variable, intending to support ERC2771. This logic is redundant because
the parent contract ERC2771ContextUpgradeable already receives and manages the forwarder
address upon construction.
62 /// @notice Trusted forwarder for Gelato Relay (ERC2771)
63 /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
64 address private immutable _trustedForwarder;

Listing 2.6: src/Q101AirdropVesting.sol

161 /// @custom:oz-upgrades-unsafe-allow constructor
162 constructor(address trustedForwarder_) ERC2771ContextUpgradeable(trustedForwarder_) {
163 _trustedForwarder = trustedForwarder_;
164 _disableInitializers();
165 }

Listing 2.7: src/Q101AirdropVesting.sol

Suggestion Remove the redundant assignment.

2.2.3 Fix conflicts in documentation

Status Fixed in Version 2

Introduced by Version 1

Description In contract Q101AirdropVesting, function updateMerkleRoot() allows modifying
the Merkle root for an airdrop.

However, several places in the documentation state that the Merkle root is immutable,
which conflicts with contract Q101AirdropVesting’s implementation.
311 function updateMerkleRoot(bytes32 _merkleRoot) external onlyOwner {
312 require(merkleRoot != bytes32(0), "Must call configureAirdrop first");
313 require(_merkleRoot != bytes32(0), "Invalid merkle root");

10

314
315 bytes32 oldRoot = merkleRoot;
316 merkleRoot = _merkleRoot;
317
318 emit MerkleRootUpdated(oldRoot, _merkleRoot);
319 }

Listing 2.8: src/Q101AirdropVesting.sol

35#### Security Highlights:
36- Merkle root can only be set once (immutable after initialization)

Listing 2.9: README.md

4801. **One-Time Merkle Root**: Cannot update Merkle root after initial setup
481 - Design: Prevents unauthorized changes
482 - Workaround: Deploy new vesting contract for new distributions

Listing 2.10: README.md

Suggestion Fix the incorrect description in the documentation.

2.2.4 Optimize ownership grant logic

Status Fixed in Version 2

Introduced by Version 1

Description In function initialize(), the ownership initialization and transfer on lines 49 and
55 are redundant, incurring unnecessary gas costs for storage writes. The ownership can be
granted directly to address gnosisSafe via a single invocation to function __Ownable_init().
49 __Ownable_init(msg.sender);
50 __Pausable_init();
51
52 _mint(gnosisSafe, TOTAL_SUPPLY);
53
54 // Transfer ownership to Gnosis Safe
55 transferOwnership(gnosisSafe);

Listing 2.11: src/Q101Token.sol

Suggestion Use __Ownable_init(gnosisSafe) to grant ownership.

2.3 Note

2.3.1 Ensure secure generation of vouchers

Introduced by Version 1

Description In the contract Q101AirdropVesting, a user’s claim is verified against a Merkle
root using voucherId as a unique identifier. Since voucherId is not bound to the user’s address,
the project should implement its stringent generation to ensure claim integrity and prevent

11

unauthorized access. The voucherId must be generated offline in a manner that guarantees
high entropy, confidential distribution, and global uniqueness, ensuring that it cannot be de-
rived from public parameters or reused.
Feedback from the project The project acknowledged this note.

2.3.2 Potential centralization risks

Introduced by Version 1

Description In this project, privileged roles (e.g., owner) can conduct sensitive operations,
which introduces potential centralization risks. For example, the owner controls critical air-
drop parameter configurations (e.g., via functions configureAirdrop(), updateMerkleRoot(),
updateRevealDelay(), and updateWithdrawRestrictions()) and can also invoke the function
emergencyWithdraw() to extract all contract-held tokens. If the private keys of the privileged
accounts are lost or maliciously exploited, it could pose a significant risk to the protocol.
Feedback from the project The project confirmed that all sensitive operations, including
configureAirdrop(), updateMerkleRoot(), updateRevealDelay(), and updateWithdrawRestrictions(),
are managed via a multi-signature wallet, requiring authorization from multiple signatories for
execution.

2.3.3 Proxy deployment and implementation binding should be atomic

Introduced by Version 1

Description To prevent potential front-running attacks, it is recommended that proxy de-
ployment and implementation binding be executed atomically within a single transaction. If
these operations are performed separately, malicious actors could exploit the time window
between deployment and binding to front-run the implementation binding transaction. An at-
tacker could potentially bind their own malicious implementation to the newly deployed proxy
contract, gaining unauthorized control over the protocol’s upgrade mechanism and user funds.
This race condition poses significant security risks, including complete protocol compromise,
fund theft, and unauthorized access to privileged functions.
Feedback from the project The project acknowledged this note and will ensure the imple-
mentation is correctly bound upon deployment.

2.3.4 Ensure sufficient token balances in contract Q101AirdropVesting

Introduced by Version 1

Description In contract Q101AirdropVesting, there is no explicit logic to accept tokens for
airdrop allocation. Therefore, the project should manually transfer tokens to the contract and
maintain sufficient balances to fulfill all airdrop claims.
Feedback from the project The project acknowledged this note.

12

2.3.5 Security of Gelato integration

Introduced by Version 1

Description The contract Q101AirdropVesting integrates Gelato to allow users to make gas-
less invocations (specifically for the functions commit(), reveal(), and withdraw()), with the
gas sponsored by the project. To prevent malicious depletion of the sponsorship funding pool,
the project should limit the user call frequency on the backend.
Feedback from the project The project acknowledged this note.

2.3.6 Merkle tree modification should only add new vouchers

Introduced by Version 1

Description In the contract Q101AirdropVesting, the function updateMerkleRoot() allows the
project team to add new voucherId and amount pairs. To ensure that the update operation does
not affect the eligibility of existing users, the newMerkle tree should include all previously valid
leaf nodes when calculating the new merkleRoot.
Feedback from the project The project acknowledged this note.

13

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Security Issues
	1.3.2 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Security Issue
	2.1.1 Premature vesting release due to rounding down
	2.1.2 Potential replay risks due to lack of domain separation
	2.1.3 Potential DoS on airdrop claims
	2.1.4 Lack of voucherId invalidation for failed reveal attempts

	2.2 Recommendation
	2.2.1 Validate configured startTime in function configureAirdrop()
	2.2.2 Remove redundant code
	2.2.3 Fix conflicts in documentation
	2.2.4 Optimize ownership grant logic

	2.3 Note
	2.3.1 Ensure secure generation of vouchers
	2.3.2 Potential centralization risks
	2.3.3 Proxy deployment and implementation binding should be atomic
	2.3.4 Ensure sufficient token balances in contract Q101AirdropVesting
	2.3.5 Security of Gelato integration
	2.3.6 Merkle tree modification should only add new vouchers

		2026-01-06T16:35:32+0800

